arrays - what is numpy.ndarray without column in python? -
i saw sample:
from sklearn import cross_validation sklearn import metrics sklearn import svm sklearn import datasets iris = datasets.load_iris() clf = svm.svc(kernel='linear', c=1) predicted = cross_validation.cross_val_predict(clf, iris.data,iris.target, cv=10) metrics.accuracy_score(iris.target, predicted)
so wrote:
from sklearn import cross_validation sklearn import metrics sklearn import svm clf = svm.svc(kernel='linear', c=1) train_data_input=train_df.iloc[:,1:].values train_data_output=train_df[[0]].values predicted = cross_validation.cross_val_predict(clf, train_data_input,train_data_output, cv=10) metrics.accuracy_score(train_data_output, predicted)
but got error:
indexerror: many indices array.
i think, problem relate type of "train_data_output". whilst see these types:
type(train_data_output) out[32]: numpy.ndarray type(iris.target) out[33]: numpy.ndarray
but in "spyder>variable explorer window" can see difference, in "size" column show variable has column (891,1), in sample variable there isn't column (150,)!!!
train_data_input.shape out[34]: (891, 12) train_data_output.shape out[35]: (891, 1) predicted.shape out[36]: (150,) iris.target.shape out[37]: (150,)
by comment @shanmuga solve problem in way:
train_data_output=np.reshape(train_data_output, (891,))
but how extract column datafram don't need command?
Comments
Post a Comment